
[Parejiya, 4(2): February, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [346]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY

TRANSFORMING NETWORK CODING WITH TCP FOR BROADCASTING

STREAMING DATA IN MULTI-HOP WIRELESS LAN
Ashish Parejiya*, Dr. Vinod Desai

*PhD Scholer(CSS), Mewar University, Chittorgarh, INDIA

Computer Science Departments, Govt. Science College, Navsari, INDIA

ABSTRACT
This paper focuses on using Network Coding (NC) with TCP for multi-hop wireless networks to provide fault-

tolerant and timely delivery of streaming data. The paper shows that there is an inherent latency in video playback

when TCP with random linear NC is employed. With the objective of reducing latency and jitter at the receiver, the

paper proposes a Variable Bucket size based Network Coding (VBNC) technique that modifies the TCP congestion

control to adapt to the arriving traffic and dynamic network conditions. Simulation results demonstrate that on an

average the proposed algorithm reduces observed latency at playback by 80% and jitter by more than 50% over

standard TCP. More importantly, a significant reduction in the initial start-up delay is observed which enhances the

performance of streaming services.

Keywords: Bucket size, congestion control, finite field, intra-session network coding, latency, random linear

network coding, ns-3, round trip time, streaming media, video aware network coding

INTRODUCTION
Network coding has found many applications [1] in

wireless networks, since the idea was first developed

by Ahlswede, et. al [2]. Recent research has shown

that due to the throughput-enhancing and error-

resilient capabilities of NC in wireless networks,

delay-optimized and quality media streaming

delivery is achievable [3], [4], [5], and [6]. However,

reliable streaming media delivery still faces

challenges of low bandwidth availability, channel

variations and congestion in the network [7], [8]. In

order to achieve reliability, most of the streaming

traffic use TCP as a transport protocol [9] which is

designed to handle network congestion and varying

bandwidth for wired networks [10]. On the other

hand, TCP adds inherent delays in wireless networks

mainly due to undesirable retransmissions [11], [12].

Seminal work on combining TCP with NC,

demonstrated enhancement in the throughput by

avoiding undesirable packet retransmissions both

using bidirectional flows of traffic [13] and modified

TCP ACKs [14]. Recent work on coded TCP [6]

presented a new congestion control technique for NC

that entirely replaces the current TCP stack but

provides significant benefits in throughput and data

completion times. However, this technique requires a

complete overhaul of the current TCP stack which

makes it difficult to implement on already existing

networks.

Fig. 1. System model depicting the video source and

receiver’s network stack; the arrows indicate the
direction of packet flow along the stack

The main contribution of this paper is the

modification to the existing TCP’s packet-sending

mechanism by using a variable coding block size

(bucket size) NC technique. This technique is

bounded by the amount of traffic available to send,

transmission opportunity available from the TCP

ACK feedback and the total round-trip-time obtained

after receiving the TCP ACK. This paper will

demonstrate using simulations that the proposed

approach reduces average latency and jitter

significantly, while also providing low latency at the

start of a video in wireless networks. The paper is

organized as follows: Section II describes our system

model and assumptions. Section III presents our

analysis, implementation details and results observed

http://www.ijesrt.com/

[Parejiya, 4(2): February, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [347]

for different scenarios followed by inferences. The

future work arising from this work is discussed in

section IV followed by the concluding section V.

Parameters
Silence of the

lambs
Formula 1

Peak Bit Rate (per

sec)

4.4 × 106 2.9 × 106

Mean Bit Rate (per

sec)

5.8 × 105 8.4 × 105

Mean Frame Size

(Bytes)

2.9 × 103 4.2 × 103

Max. Frame Size

(Bytes)

22239 14431

Min. Frame Size

(Bytes)

158 130

TABLE I. PARAMETERS OF THE DIFFERENT VIDEO TRACES

I. SYSTEM MODEL AND ASSUMPTIONS

Our system model is presented in figure 1. We

consider a multi-hop wireless network where the

video server (source) node is responsible for

generating and streaming video traffic to the end

user. In our experiments, we use actual traces

captured from stored videos in MPEG4 format for

realistic evaluation of our algorithm [15]. The

parameters of the different video streams used are

tabulated in I. The server uses TCP as a transport

protocol to provide reliable video transmission and it

generates network coded packets by performing

intra-session NC using random linear packet

combinations. The channel error model is based on

the NIST error model for 802.11b [16]. The gateways

forward this network coded packets which are

eventually decoded by the decoder module present in

the NC layer of the receiver/End user using Gaussian

Elimination technique. The decoded packets are

passed up to the playback buffer to maintain a steady

rate of video playback. The playback buffer is

responsible for steady playback of received video

content. We assume that the video playback occurs at

a constant rate and there are no deliberate pauses

caused by the user. We also assume that there is

negligible delay between decoding the arrived coded

packets and sending the decoded packets up to the

playback buffer.

Next, we describe the cross layer communication

process between the TCP layer and the NC layer for a

streaming video application.

Standard TCP

In the slow-start phase of TCP congestion control, the

value of the congestion window rises exponentially

with the reception of every ACK received. However,

for an uncongested channel, the source (if it has data

to send) should be able to send more data than the

updated congestion window size. It has been shown

[11] that TCP misinterprets the random packet losses

due to wireless channel fading as congestion in

wireless networks. As a result, congestion control

mechanism is triggered which leads to an undesirable

reduction in source sending rate. To avoid this

undesirable control mechanism, the MAC layer in the

intermediate nodes initiate the automatic repeat

request (ARQ) retransmission process that prevents

some of the link losses from being acknowledged as

congestion [17]. These retransmissions do not affect

the source sending rate, but they do add an

unnecessary delay in data delivery which is observed

in the round-trip-time (RTT) computed at the TCP

layer. The sender’s TCP layer estimates the RTT for

every ACK received based on the mean RTT

observed over previously obtained samples of RTT

along with a factor of the mean deviation in RTT

[10], [18].

A. TCP with NC

A NC layer is inserted in between TCP and IP a layer

that creates coded packets from the TCP segments

passed down the stack. The operation of simple

random linear NC with TCP can be explained by

considering two scenarios. Consider N TCP packets

in the buffer where k is the bucket size and cwnd

represents the congestion window. For N >= k, k

packets are combined together and G k packets are

transmitted. Since the operation is agnostic of the size

of cwnd, the sending rate control is not achieved as

optimally as TCP alone would normally do. In the

second scenario, when N < k, in order to account for

the fixed k packets, the NC layer inserts zero payload

packets, which effectively means that the sender

waits for more packets to arrive to fill the coding

buffer. An estimated RTT is computed for every

cumulative ACK sent by the receiver that indicates

the reception of the packets coded together of bucket

size k. So, with k, the value of estimated RTT

increases.

http://www.ijesrt.com/

[Parejiya, 4(2): February, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [348]

Fig. 2. Relationship between end-to-end latency and RTT

for fixed bucket size: 4 RLNC for the video trace

“Silence of the lambs”

We demonstrate the implication of increasing RTT

on the end-to-end latency observed at the receiver. It

is clear from the figures 2, 3 that there is an almost

proportional increase in latency with increase in

RTT. A latency of as high as 1.2 s is observed which

would completely kill a streaming session [19]. We

perform these experiments using the trace for

“Silence of the lambs” over a period of 100 s.

Fig. 3. Relationship between end-to-end latency and RTT

for fixed bucket size: 10 RLNC for the video trace

“Silence of the lambs”

B. Variable Bucket Size Intra-Session Network
Coding (VBNC)

In order to mitigate the problem of added latency due

to RLNC, we modify the coding bucket size based on

three parameters:

 Congestion window: TCP’s congestion

window is an application layer agnostic

parameter. Since, the NC layer lies below the

transport layer, we utilize the information

regarding the available transmission window

and number of bytes that are waiting to be

acknowledged

 Available traffic: Depending on the kind of

traffic to be streaming, different media sources

are characterized by packet sizes and arrival
rates as shown in the table I

 RTT: TCP’s RTT indicates the available

bandwidth which is used to determine the new

congestion window. However, the fixed

bucket size NC affects the total RTT as shown
in figures 2 and 3

At the initialization stage, coding bucket size is 1. On

receiving an ACK, the congestion window is updated

(increased) and the bucket size also increases based

on the number of packets waiting to be transmitted at

the sender. An increased congestion window implies

an increase in the available transmission opportunity

and more packets are drawn from the source video

queue. The bucket size that determines the number of

packets to be combined to form network coded

packets is now calculated based on the available

transmission opportunity, the amount of data present

in the source video queue and the bytes that are yet to

be acknowledged, called bytes in flight. Instead of a

predetermined fixed bucket size, we now use the

following pseudo code to determine the number of

packet combinations to be sent across the network

from the source. Let the available window be

represented by w, the tcp buffer size by b and bytes

in flight be represented by unack. The available

window is essentially determined by mincwnd, rwnd

where cwnd is the current size of the congestion

window and rwnd corresponds to the number of bytes

the receiver can hold indicated in the ACK sent.

If w = (b - unack) then

bucketSize ? (b - unack)/maxPktSize

Else if w = (b - unack) && w = unack then

bucketSize ? (w - unack)/maxPktSize

End if

With this modification to the block based encoding

scheme, the bucket size becomes dynamic and

dependent on the available packets at the source. This

results in an aggressive source sending rate which

benefits media streaming traffic that are characterized

similar to those specified in table I. When there are

random losses in the network, the redundant G coded

packets prevent undesirable retransmissions by TCP

[20]. However, in order to prevent a timeout at the

TCP source, for every innovative packet received, an

ACK, indicating a new degree of freedom is sent

[14]. When congestion in the network occurs, which

is indicated by a missed ACK or 3 duplicate ACKs,

the bucket size is adjusted based on the updated

congestion window, which takes into account the

missing degrees of freedom. Now, the available

transmission opportunity reduces causing a decrease

in the bucket size and slowing down the sending rate

at the source.

However, from figures 2 and 3, we conclude that

there is a significant impact of NC on RTT causing

an increase in overall latency. So, we place an upper

bound on the bucket size dependent on the RTT. The

RTT from Google across US goes up to a maximum

of 100 ms [21] and we use this bound on RTT to

determine our bucket size. When the RTT goes above

100 ms, we reduce the bucket size by half. This is a

heuristic approach which is conservative. More

analysis is required to determine the analytical

expression on the bounds for the coding bucket size.

http://www.ijesrt.com/

[Parejiya, 4(2): February, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [349]

PERFORMANCE ANALYSIS
A. Implementation

In this section, we present the ns-3 simulator’s

framework used to test the proposed system. The NC

module implemented in C by Keller [22] (based on

Random Linear NC (RLNC)) was used as a building

block to insert between the TCP and IP layers of the

stack. The following sub-section summarizes the NC

module used and the integration of the NC module in

ns-3 is summarized in subsequent sections.

1) Random Linear Coding: This module is

responsible for creating a finite field, GF (216),

forming encoding coefficients and global coefficient

matrix based on the block size and the decoder.

Using Gaussian elimination technique, the decoder

decodes the received packets successfully if the

received encoded packets are linearly independent.

Fig. 4. Flowchart for packet flow at receiver

2) Integration into ns-3: The placement of the NC

layer in the stack was decided based on the amount of

complexity added in the implementation. If the NC

layer was implemented directly on the application

layer packets, then it would not be able to mask the

random packet losses due to the wireless channel

from the congestion control action of TCP. Thus, the

NC layer was chosen to be inserted in between the

transport and IP layer. The intermediate nodes are

unaware of the presence of the NC layer as they will

simply forward the packet after checking the MAC.

Ns-3 facilitates quick integration of a new module

due to salient features like helper modules and highly

detailed PHY, MAC and the rest of the network stack

[23].

Packet reception is summarized in figure 4. The

TCP ACKs are modified to indicate the reception of

cumulative number of innovative packets, known as

the degree of freedom enabling faster processing

which still serves the purpose of flow control. The

NC header allocates 8 bits to inform the receiver of

the bucket size decided at the sender. The elements of

the NC header are as shown in the figure 5. The

random seed in the header is used to ensure that the

receiver generates the same set of coefficients for the

finite field as the sender for successfully decoding the

packet.

 7 15

0 Bucket Size Random Speed

16
Source IP Address

32

48
Destination IP Address

64

Fig. 5. Network coding header structure

A. Simulation

Our experimental set up is described in the table

II. We simulate a topology where nodes are placed at

random within a 1000 * 1000 square units of area.

We used the real-world traces of ”Silence of the

lambs” and ”Formula 1” [15] to plot the latency

observed for TCP and the variable bucket size NC

with TCP.
TABLE II SIMMULATION SETUP

Parameter Description/Value

Number of nodes 20

Mobility Static

Routing AODV

Propagation Loss Friis

PER Model NIST Error Model [16]

Video Source Video traces obtained from

[15]

Fig. 6. Latency comparison between TCP and variable

bucket size NC for ”Silence of the lambs” trace

1) Latency: Among the different sources of latency

[24], we only focus on the impact of TCP and the

layers below. Thus, we define latency as the time it

takes for the server’s video application packet (after

the process of video encoding) to travel down the

• Coded packet
received passed up
from the IP layer at
receiver

1

• NC stores packet in
decoding queue
and waits for k
packets

2
• Cumulative ACK

corresponding to
all decoded bytes
is sent back

3

http://www.ijesrt.com/

[Parejiya, 4(2): February, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [350]

stack from the application layer and be delivered to

the application layer at the receiver (before the

process of video decoding) [24], [25]. In figure 6, we

see that where standard TCP experiences a peak

delay of more than 1 s, our algorithm causes a peak

latency of up to 90 ms for the trace of “Silence of the

lambs”. On the other hand, the peak latency increases

to approximately 200 ms for the “Formula 1” trace.

We see that as compared to standard TCP there is an

80% reduction in latency at the receiver. The

significant improvement provided by the variable

bucket size algorithm can be attributed to the

aggressive behavior of the algorithm to transmit the

data based on available transmission opportunity.

2) Jitter: Jitter is another important metric that affects

the performance evaluation of a streaming service

[5]. We define jitter as the average difference in the

video frame arrival observed at the receiver’s

playback buffer [5], [25]. This difference in the

arrival leads to interruptions while video playback

[26]. We plot the jitter variation for both the video

traces considered for the latency experiment over a

simulation time of 100 s. From the figure 8, we see

that for “Silence of the lambs”, at the start of the

video, jitter for standard TCP is around 200ms as

compared to 150ms for VBNC. However, the mean

jitter for the duration of the video lies at around

200ms which is a 50% reduction than that in the case

of TCP.

Fig. 7. Latency comparison between TCP and variable

bucket size NC for ”Formula 1” trace

Fig. 8. Jitter comparison for TCP and variable bucket size

NC for ” Silence of the lambs” trace

Similarly, the mean jitter for the “Formula 1” trace in

case of VBNC is approximately 60% less than that

for TCP.

The increased jitter in the second case can be

attributed to the fact that the mean frame sizes and

data rate are higher than those for the “Silence of the

lambs”. However, the trend in latency and jitter is

observed to be similar using our approach as opposed

to standard TCP that incurs a much larger latency and

jitter for the second case.

Fig. 9. Jitter comparison for TCP and variable bucket size

NC for ”Formula 1” trace

B. Discussion and Future Work

Although, RLNC has been shown to provide

throughput enhancements for TCP [13], [14], it also

adversely affects the overall RTT measured at TCP.

Our proposed approach significantly outperforms

TCP by reducing the end-to-end latency by 80% and

jitter by more than 50% as demonstrated on real-

world video traces. The stable response of our

approach as seen from the experiments can be

attributed to the fact that the upper bound on the

bucket size is placed based on a desired RTT. This

bound acts as a control feedback which ensures that

the latency and jitter stay within desirable limits.

There is a need to derive an analytical expression for

the coding bucket size with the objective of

minimizing latency and jitter. As a part of the future

work, we propose to use a dynamic programming

framework with the aggregate objective of

minimizing latency and jitter under the constraints of

the arriving video traffic and congestion control

methods. Another future area of study is the impact

of the latest developments in the real-world

implementation of the TCP stack on Linux that

includes the “Controlled Delay (CoDel)” algorithm

[27] for preventing excessive queueing at

intermediate nodes, on our algorithm’s performance.

Evaluating our approach on TCP with CoDel would

help in analyzing the impact of delay based packet

drops in the intermediate nodes and how that leads to

corresponding changes in the bucket size.

http://www.ijesrt.com/

[Parejiya, 4(2): February, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [351]

CONCLUSION
In this paper, we have proposed a modified NC

algorithm that is implemented below the transport

layer with minor modifications to the congestion

control mechanism of TCP. This approach succeeds

in providing low latency and jitter for streaming

media as compared to the standard TCP which is

corroborated by our simulation results that show an

80% reduction in end-to-end latency and more than

50% reduction in jitter for video data delivery. From

a practical stand-point, minimal changes are required

to be implemented at the TCP layer which enables its

immediate deployment in real-world scenarios for

streaming media in ad hoc wireless networks.

REFERENCES
1. Fragouli and E. Soljanin, “Network coding

applications,” Foundations and Trends in
Networking, vol. 2, no. 2, pp. 135–269, 2007.

2. R. Ahlswede, S.-Y. Li, and R. Yeung, “Network

information flow,” IEEE Transactions on

Information Theory, vol. 46, no. 4, pp. 1204–

1216, Jul. 2000. [Online]. Available:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.h

tm?arnumber=850663

3. N. Thomos and P. Frossard, “Network coding and

media streaming (Invited Paper),” Journal of

Communications, vol. 4, no. 9, pp. 628–639, Oct.

2009. [Online]. Available:

http://ojs.academypublisher.com/index.php/jcm/ar
ticle/view/1874

4. H. Seferoglu and A. Markopolou, “Delay-

optimized network coding for video streaming

over wireless networks,” 2010 IEEE International

Conference on Communications, pp. 1–5, May

2010. [Online]. Available:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.h
tm?arnumber=5502651

5. A. ParandehGheibi, M. Medard, A. Ozdaglar, and

S. Shakkottai, “Avoiding interruptions a QoE

reliability function for streaming media

applications,” IEEE Journal on Selected Areas in

Communications, vol. 29, no. 5, pp. 1064–1074,

May 2011. [Online]. Available:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.h

tm?arnumber=5753570

6. M. Kim, J. Cloud, A. Parandehgheibi, L. Urbina,

K. Fouli, D. Leith, and M. M´edard, “Network

coded TCP (CTCP),” arXiv preprint arXiv:
1212.2291, 2012.

7. X. Zhu and B. Girod, “Video streaming over

wireless networks,” Proceedings of the European

Signal Processing Conference, EUSIPCO- 07,

Poznan, Poland, 2007.

8. H. Wang, J. Liang, and C. J. Kuo, “Overview of

robust video streaming with network,” Journal of

Information Hiding and Multimedia Signal
Processing, pp. 36–50, 2010.

9. D. Lee, B. E. Carpenter, and N. Brownlee, “Media

streaming observations : trends in UDP to TCP

ratio,” International Journal on Advancements in

Systems and Measurements, vol. 3, no. 3, pp.
147–162, 2010.

10. V. Jacobson, “Congestion avoidance and control,”

Proceedings of SIGCOMM’ 88, Stanford, CA, no.
60, pp. 1–25, August 1988.

11. K. X. Ye Tian and N. Ansari, “TCP in wireless

environments: problems and solutions,” IEEE
Radio Communications, pp. 27–32, March 2005.

12. M. Ghobadi and M. Mathis, “Trickle : rate

limiting YouTube video streaming,” Proceedings

of the USENIX Annual Technical Conference

(ATC), p. 6, 2012.

13. P. S. David and A. Kumar, “Network coding for

TCP throughput enhancement over a multi-hop

wireless network,” 2008 3rd International

Conference on Communication Systems Software

and Middleware and Workshops (COMSWARE

’08), pp. 224–233, Jan. 2008. [Online]. Available:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.h
tm?arnumber=4554414

14. J. K. Sundararajan, D. Shah, M. Medard, S.

Jakubczak, M. Mitzenmacher, and J. Barros,

“Network coding meets TCP: theory and

implementation,” Proceedings of the IEEE, vol.

99, no. 3, pp. 490–512, Mar. 2011. [Online].

Available:

http://ieeexplore.ieee.org/articleDetails.jsp?arnum

ber=5688180

15. M. Reisslein and F. H. Fitzek, “MPEG4 and

H.263 video traces for network performance

evaluation,” IEEE Network, no. December, pp.
40–54, Nov/Dec 2001.

16. G. Pei and T. R. Henderson, “Validation of

OFDM error rate model in ns-3,” Boeing
Research Technology, pp. 1–15, 2010.

17. Y. Cai, S. Jiang, Q. Guan, and F. Yu, “Decoupling

congestion control from TCP (semi-TCP) for

multi-hop wireless networks,” EURASIP Journal

on Wireless Communications and Networking,

vol. 2013, no. 1, p. 149, Jun. 2013. [Online].

Available:

http://jwcn.eurasipjournals.com/content/2013/1/14

9

18. V. Paxson and M. Allman, “Computing TCP’s
retransmission timer,” RFC 2988, 2000.

http://www.ijesrt.com/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=850663
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=850663
http://ojs.academypublisher.com/index.php/jcm/article/view/1874
http://ojs.academypublisher.com/index.php/jcm/article/view/1874
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5502651
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5502651
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5753570
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5753570
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4554414
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4554414
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=5688180
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=5688180
http://jwcn.eurasipjournals.com/content/2013/1/149
http://jwcn.eurasipjournals.com/content/2013/1/149

[Parejiya, 4(2): February, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [352]

19. I. Grigorik, “Latency: the new web performance

bottleneck,” last accessed: September 2013.

[Online]. Available:

http://www.igvita.com/2012/07/19/latency-the-
newweb- performance-bottleneck/

20. P. A. Chou and Z. Miao, “Rate-distortion

optimized streaming of packetized media,” no.
May, pp. 1–16, 2005.

21. M. Belshe and R. Peon, “SPDY protocol,” last

accessed: January 2013. [Online]. Available:

http://tools.ietf. orglhtml/draft-mbelshe-

httpbisspdy- OO

22. L. Keller, “Ncutilsc,”
http://code.google.com/p/ncutils/.

23. “Network simulator 3,” http://www.nsnam.org/ns-

3-dev, accessed: 2010- 09-30.

24. I. Gloice Dean Works, “Analysis of video latency

in uav,” Ph.D. dissertation, Auburn University,

Auburn, Alabama, 2008.

25. M. Claypool and J. Tanner, “The effect of jitter on

the perceptual quality of video,” Proceedings of

ACM Multimedia, 1999.

26. G. Liang and B. Liang, “Jitter-free probability

bounds for video streaming over random VBR

channel,” Proceedings of the 3rd international

conference on Quality of service in heterogeneous

wired/wireless networks - QShine ’06, p. 6, 2006.

[Online]. Available:

http://portal.acm.org/citation.cfm?doid=1185373.

1185382

27. K. Nichols and V. Jacobson, “Controlling queue

delay,” Proceedings of ACM Queue, 2012.

http://www.ijesrt.com/
http://www.igvita.com/2012/07/19/latency-the-newweb-%20performance-bottleneck/
http://www.igvita.com/2012/07/19/latency-the-newweb-%20performance-bottleneck/
http://code.google.com/p/ncutils/
http://portal.acm.org/citation.cfm?doid=1185373.1185382
http://portal.acm.org/citation.cfm?doid=1185373.1185382

