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ABSTRACT 
This paper focuses on using Network Coding (NC) with TCP for multi-hop wireless networks to provide fault-

tolerant and timely delivery of streaming data. The paper shows that there is an inherent latency in video playback 

when TCP with random linear NC is employed. With the objective of reducing latency and jitter at the receiver, the 

paper proposes a Variable Bucket size based Network Coding (VBNC) technique that modifies the TCP congestion 

control to adapt to the arriving traffic and dynamic network conditions. Simulation results demonstrate that on an 

average the proposed algorithm reduces observed latency at playback by 80% and jitter by more than 50% over 

standard TCP. More importantly, a significant reduction in the initial start-up delay is observed which enhances the 

performance of streaming services. 
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INTRODUCTION 
Network coding has found many applications [1] in 

wireless networks, since the idea was first developed 

by Ahlswede, et. al [2]. Recent research has shown 

that due to the throughput-enhancing and error-

resilient capabilities of NC in wireless networks, 

delay-optimized and quality media streaming 

delivery is achievable [3], [4], [5], and [6]. However, 

reliable streaming media delivery still faces 

challenges of low bandwidth availability, channel 

variations and congestion in the network [7], [8]. In 

order to achieve reliability, most of the streaming 

traffic use TCP as a transport protocol [9] which is 

designed to handle network congestion and varying 

bandwidth for wired networks [10]. On the other 

hand, TCP adds inherent delays in wireless networks 

mainly due to undesirable retransmissions [11], [12]. 

Seminal work on combining TCP with NC, 

demonstrated enhancement in the throughput by 

avoiding undesirable packet retransmissions both 

using bidirectional flows of traffic [13] and modified 

TCP ACKs [14]. Recent work on coded TCP [6] 

presented a new congestion control technique for NC 

that entirely replaces the current TCP stack but 

provides significant benefits in throughput and data 

completion times. However, this technique requires a 

complete overhaul of the current TCP stack which 

makes it difficult to implement on already existing 

networks. 

 
Fig. 1. System model depicting the video source and 

receiver’s network stack; the arrows indicate the 
direction of packet flow along the stack 

The main contribution of this paper is the 

modification to the existing TCP’s packet-sending 

mechanism by using a variable coding block size 

(bucket size) NC technique. This technique is 

bounded by the amount of traffic available to send, 

transmission opportunity available from the TCP 

ACK feedback and the total round-trip-time obtained 

after receiving the TCP ACK. This paper will 

demonstrate using simulations that the proposed 

approach reduces average latency and jitter 

significantly, while also providing low latency at the 

start of a video in wireless networks. The paper is 

organized as follows: Section II describes our system 

model and assumptions. Section III presents our 

analysis, implementation details and results observed 
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for different scenarios followed by inferences. The 

future work arising from this work is discussed in 

section IV followed by the concluding section V. 

Parameters 
Silence of the 

lambs 
Formula 1 

Peak Bit Rate (per 

sec) 

4.4 × 106 2.9 × 106 

Mean Bit Rate (per 

sec) 

5.8 × 105 8.4 × 105 

Mean Frame Size 

(Bytes) 

2.9 × 103 4.2 × 103 

Max. Frame Size 

(Bytes) 

22239 14431 

Min. Frame Size 

(Bytes) 

158 130 

TABLE I. PARAMETERS OF THE DIFFERENT VIDEO TRACES 

I. SYSTEM MODEL AND ASSUMPTIONS 

Our system model is presented in figure 1. We 

consider a multi-hop wireless network where the 

video server (source) node is responsible for 

generating and streaming video traffic to the end 

user. In our experiments, we use actual traces 

captured from stored videos in MPEG4 format for 

realistic evaluation of our algorithm [15]. The 

parameters of the different video streams used are 

tabulated in I. The server uses TCP as a transport 

protocol to provide reliable video transmission and it 

generates network coded packets by performing 

intra-session NC using random linear packet 

combinations. The channel error model is based on 

the NIST error model for 802.11b [16]. The gateways 

forward this network coded packets which are 

eventually decoded by the decoder module present in 

the NC layer of the receiver/End user using Gaussian 

Elimination technique. The decoded packets are 

passed up to the playback buffer to maintain a steady 

rate of video playback. The playback buffer is 

responsible for steady playback of received video 

content. We assume that the video playback occurs at 

a constant rate and there are no deliberate pauses 

caused by the user. We also assume that there is 

negligible delay between decoding the arrived coded 

packets and sending the decoded packets up to the 

playback buffer. 

Next, we describe the cross layer communication 

process between the TCP layer and the NC layer for a 

streaming video application. 

Standard TCP 

In the slow-start phase of TCP congestion control, the 

value of the congestion window rises exponentially 

with the reception of every ACK received. However, 

for an uncongested channel, the source (if it has data 

to send) should be able to send more data than the 

updated congestion window size. It has been shown 

[11] that TCP misinterprets the random packet losses 

due to wireless channel fading as congestion in 

wireless networks. As a result, congestion control 

mechanism is triggered which leads to an undesirable 

reduction in source sending rate. To avoid this 

undesirable control mechanism, the MAC layer in the 

intermediate nodes initiate the automatic repeat 

request (ARQ) retransmission process that prevents 

some of the link losses from being acknowledged as 

congestion [17]. These retransmissions do not affect 

the source sending rate, but they do add an 

unnecessary delay in data delivery which is observed 

in the round-trip-time (RTT) computed at the TCP 

layer. The sender’s TCP layer estimates the RTT for 

every ACK received based on the mean RTT 

observed over previously obtained samples of RTT 

along with a factor of the mean deviation in RTT 

[10], [18]. 

A. TCP with NC 

A NC layer is inserted in between TCP and IP a layer 

that creates coded packets from the TCP segments 

passed down the stack. The operation of simple 

random linear NC with TCP can be explained by 

considering two scenarios. Consider N TCP packets 

in the buffer where k is the bucket size and cwnd 

represents the congestion window. For N >= k, k 

packets are combined together and G k packets are 

transmitted. Since the operation is agnostic of the size 

of cwnd, the sending rate control is not achieved as 

optimally as TCP alone would normally do. In the 

second scenario, when N < k, in order to account for 

the fixed k packets, the NC layer inserts zero payload 

packets, which effectively means that the sender 

waits for more packets to arrive to fill the coding 

buffer. An estimated RTT is computed for every 

cumulative ACK sent by the receiver that indicates 

the reception of the packets coded together of bucket 

size k. So, with k, the value of estimated RTT 

increases. 
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Fig. 2. Relationship between end-to-end latency and RTT 

for fixed bucket size: 4 RLNC for the video trace 

“Silence of the lambs” 

We demonstrate the implication of increasing RTT 

on the end-to-end latency observed at the receiver. It 

is clear from the figures 2, 3 that there is an almost 

proportional increase in latency with increase in 

RTT. A latency of as high as 1.2 s is observed which 

would completely kill a streaming session [19]. We 

perform these experiments using the trace for 

“Silence of the lambs” over a period of 100 s. 

 
Fig. 3. Relationship between end-to-end latency and RTT 

for fixed bucket size: 10 RLNC for the video trace 

“Silence of the lambs” 

B. Variable Bucket Size Intra-Session Network 
Coding (VBNC) 

In order to mitigate the problem of added latency due 

to RLNC, we modify the coding bucket size based on 

three parameters: 

 Congestion window: TCP’s congestion 

window is an application layer agnostic 

parameter. Since, the NC layer lies below the 

transport layer, we utilize the information 

regarding the available transmission window 

and number of bytes that are waiting to be 

acknowledged 

 Available traffic: Depending on the kind of 

traffic to be streaming, different media sources 

are characterized by packet sizes and arrival 
rates as shown in the table I 

 RTT: TCP’s RTT indicates the available 

bandwidth which is used to determine the new 

congestion window. However, the fixed 

bucket size NC affects the total RTT as shown 
in figures 2 and 3 

At the initialization stage, coding bucket size is 1. On 

receiving an ACK, the congestion window is updated 

(increased) and the bucket size also increases based 

on the number of packets waiting to be transmitted at 

the sender. An increased congestion window implies 

an increase in the available transmission opportunity 

and more packets are drawn from the source video 

queue. The bucket size that determines the number of 

packets to be combined to form network coded 

packets is now calculated based on the available 

transmission opportunity, the amount of data present 

in the source video queue and the bytes that are yet to 

be acknowledged, called bytes in flight. Instead of a 

predetermined fixed bucket size, we now use the 

following pseudo code to determine the number of 

packet combinations to be sent across the network 

from the source. Let the available window be 

represented by w, the tcp buffer size by b and bytes 

in flight be represented by unack. The available 

window is essentially determined by mincwnd, rwnd 

where cwnd is the current size of the congestion 

window and rwnd corresponds to the number of bytes 

the receiver can hold indicated in the ACK sent. 

If w = (b - unack) then 

bucketSize ? (b - unack)/maxPktSize 

Else if w = (b - unack) && w = unack then 

bucketSize ? (w - unack)/maxPktSize 

End if 

With this modification to the block based encoding 

scheme, the bucket size becomes dynamic and 

dependent on the available packets at the source. This 

results in an aggressive source sending rate which 

benefits media streaming traffic that are characterized 

similar to those specified in table I. When there are 

random losses in the network, the redundant G coded 

packets prevent undesirable retransmissions by TCP 

[20]. However, in order to prevent a timeout at the 

TCP source, for every innovative packet received, an 

ACK, indicating a new degree of freedom is sent 

[14]. When congestion in the network occurs, which 

is indicated by a missed ACK or 3 duplicate ACKs, 

the bucket size is adjusted based on the updated 

congestion window, which takes into account the 

missing degrees of freedom. Now, the available 

transmission opportunity reduces causing a decrease 

in the bucket size and slowing down the sending rate 

at the source. 

However, from figures 2 and 3, we conclude that 

there is a significant impact of NC on RTT causing 

an increase in overall latency. So, we place an upper 

bound on the bucket size dependent on the RTT. The 

RTT from Google across US goes up to a maximum 

of 100 ms [21] and we use this bound on RTT to 

determine our bucket size. When the RTT goes above 

100 ms, we reduce the bucket size by half. This is a 

heuristic approach which is conservative. More 

analysis is required to determine the analytical 

expression on the bounds for the coding bucket size. 

http://www.ijesrt.com/


[Parejiya, 4(2): February, 2015]   ISSN: 2277-9655 

                                                                                                 Scientific Journal Impact Factor: 3.449 

   (ISRA), Impact Factor: 2.114 
   

http: // www.ijesrt.com                 © International Journal of Engineering Sciences & Research Technology 

 [349] 
 

PERFORMANCE ANALYSIS 
A.  Implementation 

In this section, we present the ns-3 simulator’s 

framework used to test the proposed system. The NC 

module implemented in C by Keller [22] (based on 

Random Linear NC (RLNC)) was used as a building 

block to insert between the TCP and IP layers of the 

stack. The following sub-section summarizes the NC 

module used and the integration of the NC module in 

ns-3 is summarized in subsequent sections. 

1) Random Linear Coding: This module is 

responsible for creating a finite field, GF (216), 

forming encoding coefficients and global coefficient 

matrix based on the block size and the decoder. 

Using Gaussian elimination technique, the decoder 

decodes the received packets successfully if the 

received encoded packets are linearly independent. 

 

Fig. 4. Flowchart for packet flow at receiver 

2) Integration into ns-3: The placement of the NC 

layer in the stack was decided based on the amount of 

complexity added in the implementation. If the NC 

layer was implemented directly on the application 

layer packets, then it would not be able to mask the 

random packet losses due to the wireless channel 

from the congestion control action of TCP. Thus, the 

NC layer was chosen to be inserted in between the 

transport and IP layer. The intermediate nodes are 

unaware of the presence of the NC layer as they will 

simply forward the packet after checking the MAC. 

Ns-3 facilitates quick integration of a new module 

due to salient features like helper modules and highly 

detailed PHY, MAC and the rest of the network stack 

[23]. 

Packet reception is summarized in figure 4. The 

TCP ACKs are modified to indicate the reception of 

cumulative number of innovative packets, known as 

the degree of freedom enabling faster processing 

which still serves the purpose of flow control. The 

NC header allocates 8 bits to inform the receiver of 

the bucket size decided at the sender. The elements of 

the NC header are as shown in the figure 5. The 

random seed in the header is used to ensure that the 

receiver generates the same set of coefficients for the 

finite field as the sender for successfully decoding the 

packet. 

 7 15 

0 Bucket Size Random Speed 

16 
Source IP Address 

32 

48 
Destination IP Address 

64 

Fig. 5. Network coding header structure 

A. Simulation 

Our experimental set up is described in the table 

II. We simulate a topology where nodes are placed at 

random within a 1000 * 1000 square units of area. 

We used the real-world traces of ”Silence of the 

lambs” and ”Formula 1” [15] to plot the latency 

observed for TCP and the variable bucket size NC 

with TCP. 
TABLE II SIMMULATION SETUP 

Parameter Description/Value 

Number of nodes 20 

Mobility Static 

Routing  AODV 

Propagation Loss Friis 

PER Model NIST Error Model [16] 

Video Source Video traces obtained from 

[15] 

 

Fig. 6. Latency comparison between TCP and variable 

bucket size NC for ”Silence of the lambs” trace 

1) Latency: Among the different sources of latency 

[24], we only focus on the impact of TCP and the 

layers below. Thus, we define latency as the time it 

takes for the server’s video application packet (after 

the process of video encoding) to travel down the 

• Coded packet 
received passed up 
from the IP layer at 
receiver

1

• NC stores packet in 
decoding queue 
and waits for k 
packets

2
• Cumulative ACK 

corresponding to 
all decoded bytes 
is sent back

3
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stack from the application layer and be delivered to 

the application layer at the receiver (before the 

process of video decoding) [24], [25]. In figure 6, we 

see that where standard TCP experiences a peak 

delay of more than 1 s, our algorithm causes a peak 

latency of up to 90 ms for the trace of “Silence of the 

lambs”. On the other hand, the peak latency increases 

to approximately 200 ms for the “Formula 1” trace. 

We see that as compared to standard TCP there is an 

80% reduction in latency at the receiver. The 

significant improvement provided by the variable 

bucket size algorithm can be attributed to the 

aggressive behavior of the algorithm to transmit the 

data based on available transmission opportunity. 

2) Jitter: Jitter is another important metric that affects 

the performance evaluation of a streaming service 

[5]. We define jitter as the average difference in the 

video frame arrival observed at the receiver’s 

playback buffer [5], [25]. This difference in the 

arrival leads to interruptions while video playback 

[26]. We plot the jitter variation for both the video 

traces considered for the latency experiment over a 

simulation time of 100 s. From the figure 8, we see 

that for “Silence of the lambs”, at the start of the 

video, jitter for standard TCP is around 200ms as 

compared to 150ms for VBNC. However, the mean 

jitter for the duration of the video lies at around 

200ms which is a 50% reduction than that in the case 

of TCP. 

 

Fig. 7. Latency comparison between TCP and variable 

bucket size NC for ”Formula 1” trace 

 
Fig. 8. Jitter comparison for TCP and variable bucket size 

NC for ” Silence of the lambs” trace 

Similarly, the mean jitter for the “Formula 1” trace in 

case of VBNC is approximately 60% less than that 

for TCP. 

The increased jitter in the second case can be 

attributed to the fact that the mean frame sizes and 

data rate are higher than those for the “Silence of the 

lambs”. However, the trend in latency and jitter is 

observed to be similar using our approach as opposed 

to standard TCP that incurs a much larger latency and 

jitter for the second case. 

 

Fig. 9. Jitter comparison for TCP and variable bucket size 

NC for ”Formula 1” trace 

B. Discussion and Future Work 

Although, RLNC has been shown to provide 

throughput enhancements for TCP [13], [14], it also 

adversely affects the overall RTT measured at TCP. 

Our proposed approach significantly outperforms 

TCP by reducing the end-to-end latency by 80% and 

jitter by more than 50% as demonstrated on real-

world video traces. The stable response of our 

approach as seen from the experiments can be 

attributed to the fact that the upper bound on the 

bucket size is placed based on a desired RTT. This 

bound acts as a control feedback which ensures that 

the latency and jitter stay within desirable limits. 

There is a need to derive an analytical expression for 

the coding bucket size with the objective of 

minimizing latency and jitter. As a part of the future 

work, we propose to use a dynamic programming 

framework with the aggregate objective of 

minimizing latency and jitter under the constraints of 

the arriving video traffic and congestion control 

methods. Another future area of study is the impact 

of the latest developments in the real-world 

implementation of the TCP stack on Linux that 

includes the “Controlled Delay (CoDel)” algorithm 

[27] for preventing excessive queueing at 

intermediate nodes, on our algorithm’s performance. 

Evaluating our approach on TCP with CoDel would 

help in analyzing the impact of delay based packet 

drops in the intermediate nodes and how that leads to 

corresponding changes in the bucket size. 
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CONCLUSION 
In this paper, we have proposed a modified NC 

algorithm that is implemented below the transport 

layer with minor modifications to the congestion 

control mechanism of TCP. This approach succeeds 

in providing low latency and jitter for streaming 

media as compared to the standard TCP which is 

corroborated by our simulation results that show an 

80% reduction in end-to-end latency and more than 

50% reduction in jitter for video data delivery. From 

a practical stand-point, minimal changes are required 

to be implemented at the TCP layer which enables its 

immediate deployment in real-world scenarios for 

streaming media in ad hoc wireless networks. 
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